Mutational analysis of the intramembranous H10 loop of yeast Nhx1 reveals a critical role in ion homoeostasis and vesicle trafficking.

نویسندگان

  • Sanchita Mukherjee
  • Laura Kallay
  • Christopher L Brett
  • Rajini Rao
چکیده

Yeast Nhx1 [Na+(K+)/H+ exchanger 1] is an intracellular Na+(K+)/H+ exchanger, localizing to the late endosome where it is important for ion homoeostasis and vesicle trafficking. Phylogenetic analysis of NHE (Na+/H+ exchanger) sequences has identified orthologous proteins, including HsNHE6 (human NHE6), HsNHE7 and HsNHE9 of unknown physiological role. These appear distinct from well-studied mammalian plasma membrane isoforms (NHE1-NHE5). To explore the differences between plasma membrane and intracellular NHEs and understand the link between ion homoeostasis and vesicle trafficking, we examined the consequence of replacing residues in the intramembranous H10 loop of Nhx1 between transmembrane segments 9 and 10. The critical role for the carboxy group of Glu355 in ion transport is consistent with the invariance of this residue in all NHEs. Surprisingly, residues specifically conserved in the intracellular isoforms (such as Phe357 and Tyr361) could not be replaced with closely similar residues (leucine and phenylalanine) found in the plasma membrane isoforms without loss of function, revealing unexpected side chain specificity. The trafficking phenotypes of all Nhx1 mutants, including hygromycin-sensitivity and missorting of carboxypeptidase Y, were found to directly correlate with pH homoeostasis defects and could be proportionately corrected by titration with weak base. The present study demonstrates the importance of the H10 loop of the NHE family, highlights the differences between plasma membrane and intracellular isoforms and shows that trafficking defects are tightly coupled with pH homoeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking.

The relationship between endosomal pH and function is well documented in viral entry, endosomal maturation, receptor recycling, and vesicle targeting within the endocytic pathway. However, specific molecular mechanisms that either sense or regulate luminal pH to mediate these processes have not been identified. Herein we describe the use of novel, compartment-specific pH indicators to demonstra...

متن کامل

Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers.

Sodium at high millimolar levels in the cytoplasm is toxic to plant and yeast cells. Sequestration of Na(+) ions into the vacuole is one mechanism to confer Na(+)-tolerance on these organisms. In the present study we provide direct evidence that the Arabidopsis thaliana At-NHX1 gene and the yeast NHX1 gene encode low-affinity electroneutral Na(+)/H(+) exchangers. We took advantage of the abilit...

متن کامل

Inhibition of sodium/proton exchange by a Rab-GTPase-activating protein regulates endosomal traffic in yeast.

Endosomal Na+/H+ exchangers are important for salt and osmotolerance, vacuolar pH regulation, and endosomal trafficking. We show that the C terminus of yeast Nhx1 interacts with Gyp6, a GTPase-activating protein for the Ypt/Rab family of GTPases, and that Gyp6 colocalizes with Nhx1 in the endosomal/prevacuolar compartment (PVC). The gyp6 null mutant exhibits novel phenotypes consistent with los...

متن کامل

Rab11 in Disease Progression

Membrane/ protein trafficking in the secretory/ biosynthetic and endocytic pathways is mediated by vesicles. Vesicle trafficking in eukaryotes is regulated by a class of small monomeric GTPases the Rab protein family. Rab proteins represent the largest branch of the Ras superfamily GTPases, and have been concerned in a variety of intracellular vesicle trafficking and different intracellular sig...

متن کامل

Assessment of the vacuolar Na+/H+ antiporter (NHX1) transcriptional changes in Leptochloa fusca L. in response to salt and cadmium stresses

Sodium/proton exchangers (NHX) are key players in plant responses to salinity and have a central role in establishing ion homeostasis. NHXs can be localized in tonoplast or plasma membranes, where they exchange sodium ions for protons, resulting in the removal of ions from the cytosol into vacuole or extracellular spaces. In the present study, the expression pattern of the gene encoding Na+/H+ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 398 1  شماره 

صفحات  -

تاریخ انتشار 2006